Ethyl α-Fluoro Silyl Enol Ether: Stereoselective Synthesis and Its **Aldol Reaction with Aldehydes and Ketones**

Xiao-Ting Huang and Qing-Yun Chen*

Laboratory of Fluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, 200032, Shanghai, China

chenqy@pub.sioc.ac.cn

Received August 13, 2001

Ethyl α -fluoro silyl enol ether is stereoselectively synthesized in high yield from inexpensive chlorofluoroacetate and Mg (or Zn) in DMF (or HMPA). Lewis acid promoted aldol reaction of this enol ether with aldehydes and ketones gives α -fluoro- β -hydroxy esters in good to excellent yields.

Introduction

The Mukaiyama aldol reaction is one of the most important means for C-C bond formation. Silyl enol ethers react with aldehydes in the presence of Lewis acids to give β -hydroxy carboxylates. Recently, using chiral catalysts, not only various enatioselective Mukaiyama¹ and vinylogous Mukaiyama² aldol reactions have been developed but also asymmetric reactions of α , α -difluoro silyl enol ethers (1) with carbonyl compounds have been reported.³ The utilization of 1 was further demonstrated in fluorinated sugars and amino acid syntheses.⁴ Compared with difluoro derivatives (e.g., 1), surprisingly, much less attention was paid on the synthesis and stereochemistry of α -fluoro-substituted enolates or α -fluoro silvl enol ethers (2) and their uses. The only report by Welch in 1984 was the stereoselective synthesis of α -fluoro enolates, α -fluorosilyl enol, and their reactions with aldehydes.⁵ However, the enolates were generated from extremely poisonous ethyl fluoroacetates, and the silvl enol ether formed from α -fluoroacetate was an E/Zmixture that was liable to decompose above 50 °C. Therefore, it is very desirable to find a convenient, economic method for stereoselective synthesis of silyl enol ether. In this paper, we present the synthesis of Econfigured ethyl α -fluoro silyl enol ether from inexpensive chlorofluoroacetate and its use in the direct aldol reaction.

⁽¹⁾ For general reviews, see: (a) Noyori, T. Asymmetric catalysis via chiral complex: selected examples. Asymmetric Catalysis in Organic Synthesis; John Wiley: New York 1994; Chapter 4. (b) Sawamura, M.; Ito, Y. Asymmetric aldol reactions. In *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; VCH Publishers: New York, 1993; Chapter 7.2.

Results and Discussion

1. Stereoselective Synthesis of Ethyl α-Fluoro Silyl Enol Ether. It is known that difluoro silyl enol ethers (1) are readily prepared by successive treatment of α -halo- α , α -difluoroacetates with activated zinc metal and trialkylchlorosilane in THF and then applied to the synthesis of some useful racemates including α, α -difluoro β -hydroxy esters.^{3,6} However, when we treated ethyl chlorofluoroacetate (3) under the similar conditions, no expected product, ethyl α -fluoro silyl enol ether (5), was obtained. But, interestingly, in DMF or HMPA, 5 was, indeed, formed in high yield from 3 (Scheme 1). The results are listed in Table 1.

It was noted from Table 1 that the solvent plays a very important role in this reaction. Moreover, only E-configured ethyl α -fluoro silyl enol ether 5 was obtained in high yield with Zn/HMPA or Mg/DMF. The configuration of 5 was specified by ¹H-NOESY. The alkenyl-H had an NOE effect with the H of -SiMe₃ but no NOE effect with the H of $-OCH_2CH_3$.

TMS-OTf-Promoted Aldol Reaction of Ethyl α-Fluoro Silyl Enol Ether (5) with Aromatic Aldehydes **in CH₂Cl₂**, α,α-Difluoro silyl enol ethers (1) show high reactivity toward aldehydes. For example, 1 reacts with benzaldehyde in the absence of Lewis acid in dichloromethane at -78 °C to give aldol adducts in 20% yield,^{3b} while at 40 °C, in 82% yield. Unexpectedly, we found that alkene 5 is very inert. From -78 °C to room temperature, in CH₂Cl₂ or CH₃CN, its aldol reaction with benzaldehyde did not take place in the presence of nearly all kinds of ordinary Lewis acids (such as SnCl₄, TiCl₄, AlCl₃, BF₃. OEt₂, TMS-OTf, Cu(OTf)₂, and ZnCl₂, etc.). Fortunately, when refluxed in CH₂Cl₂ and catalyzed by TMS-OTf, 5

⁽²⁾ Bluet, G.; Campagne, J.-M. J. Org. Chem. 2001, 66, 4293.
(3) (a) Iseki, K.; Kuroki, Y.; Asada, D.; Kobayashi, Y. Tetrahedron *Lett.* **1997**, *38*, 1447. (b) Iseki, K.; Kuroki, Y.; Asada, D.; Takahashi, M.; Kishimoto, S.; Kobayashi, Y. *Tetrhedron* **1997**, *53*, 10271.

⁽⁴⁾ Kukhar, V. P., Soloshonok, V. A., Eds. Fluorine-containing Amino Acids Synthesis and Properties, John Wiley & Sons: New York, 1995.
(5) Welch, J. T.; Seper, K.; Eswarakrishman, S.; Samartino, J. J. Org. Chem. 1984, 49, 4720.

^{(6) (}a) Kitagawa, O.; Taguchi, T.; Kobayashi, Y. Tetrahedron Lett. (6) (a) Kitagawa, O.; 1aguchi, T.; Kobayashi, T. *Tetraneuron Lect.* **1988**, *29*, 1803. (b) Taguchi, T.; Kitagawa, O.; Suda, Y.; Ohkawa, S.; Hashimoto, A.; Iitaka, Y.; Kobayashi, Y. *Tetrahedron Lett.* **1988**, *25*, 5291. (c) Burton, D. J.; Easdon, J. C. J. Fluorine Chem. **1988**, *38*, 125. (d) Kitagawa, O.; Hashimoto, A.; Kobayashi, Y.; Taguchi, T. Chem. Lett. **1990**, 1307. (e) Britton; Thomas, C. US 5618951, **1997**. (f) Uneyama, K. Miantoni, C.: Maeda, K. Kato, T. J. Org. Chem. **1999**, *64*, 6717. K.; Mizutani, G.; Maeda, K., Kato, T. J. Org. Chem. 1999, 64, 6717.

 Table 1. Stereoselective Synthesis of Ethyl α-Fluoro

 Silyl Enol Ether

entry	M ^a	solvent (v/v)	3/M/4	$T(^{\circ}C)$	time (h)	convn ^b (%)	yield ^c (%)
1	Zn	THF	1:1.1:1.1	40	4	0	0
2	Zn	HMPA	1:1.1:1.2	25	1.5	100	80
3	Zn	DMF	1:1.1:1.2	50	3	50	
4	Zn	CH3CN	1:1.1:1.2	50	8	0	0
5	Zn	DMF/HMPA =	1:1.1:1.2	40	6	50	
		3:1					
6	Mg	DMF	1:8:16	25	3	100	82
7	Mg	DMF	1:1.1:1.3	25	5	100	trace

 a Zinc powder was activated; magnesium was untreated. b The conversion of 3. c Isolated yield of 5.

Scheme 2

$$\begin{split} R_2 &= \text{Ph(6a), } 4\text{-}\text{CF}_3\text{-}\text{C}_6\text{H}_4(\textbf{6b}), \\ 3\text{-}\text{NO}_2\text{-}\text{C}_6\text{H}_4(\textbf{6e}), \\ 2\text{-}\text{NO}_2\text{-}\text{C}_6\text{H}_4(\textbf{6e}), \\ 4\text{-}\text{CH}_3\text{-}\text{C}_6\text{H}_4(\textbf{6g}), \\ 3\text{-}\text{CH}_3\text{-}\text{C}_6\text{H}_4(\textbf{6h}), \\ 4\text{-}\text{F}\text{-}\text{C}_6\text{H}_4(\textbf{6i}), \\ 4\text{-}\text{C}\text{-}\text{C}_6\text{H}_4(\textbf{6j}), \\ 4\text{-}\text{C}\text{-}\text{C}_6\text{H}_4(\textbf{6i}), \\ 4\text{-}\text{C}\text{-}\text{C}_6\text{-}$$

 Table 2. TMS-OTf-Catalyzed Aldol Reaction of Ethyl

 α-Fluoro Silyl Enol Ether^a

					7	
		time	convn ^b		vield ^c	7
entry	R_1R_2CO	(h)	(%)	products	໌(%)	syn/anti ^d
1	6a	4	100	7a	81	53:47
2	6b	4	100	7b	85	54:46
3	6c	4	100	7c	80	50:50
4	6d	4	100	7d	87	56:44
5	6e	4	100	7e	80	50:50
6	6f	4	100	7f	83	52:48
7	6g	5	100	7g	60	44:56
8	6 h	5	100	7 h	72	50:50
9	6i	4	100	7i	78	44:56
10	<u>6j</u>	5	100	7j	75	50:50
11	6Ř	5	100	7ĸ	74	50:50
12	61	4	100	71	65	50:50
13	6m	5	70			
14	6n	5	60			

^{*a*} TMS-OTf was catalytic amount (2%). ^{*b*} The conversion was based on **5** by ¹⁹F NMR. ^{*c*} Isolated yields of **7** in addition to a trace of HCF₂CO₂Et. ^{*d*} The ratio was determined by ¹⁹F NMR.

did react with benzaldehydes to give the aldol adducts **7** in good yields (Scheme 2).⁷ The results are listed in Table 2.

The data in Table 2 show that **5** could react well with electron-deficient aromatic aldehydes, but not so well with electron-rich aromatic ones and not at all with aliphatic aldehydes.

3. CuCl-Promoted Aldol Reaction of Ethyl α -Fluoro Silyl Enol Ether (5) with Electron-Rich Aromatic Aldehydes, Aliphatic Aldehydes, and Ketones in HMPA. After several attempts, it was found that with HMPA as a solvent, CuCl can promote the aldol reaction of 5 with electron-rich aromatic aldehydes [such as 4-MeOC₆H₄CHO (**6m**), 4-Me₂NC₆H₄CHO (**6p**)], aliphatic

Scheme 3

Table 3.	CuCl-Catalyzed Aldol Reaction of Ethyl
	α-Fluoro Silyl Enol Ether ^a

entry	R ₁ R ₂ CO	time (h)	convn ^b (%)	products	7 yields ^c (%)	7 ^d syn/anti
1	6m	10	100	7m	84	53:47
2^{e}	6m	10	100	7m	55	
3	6n	8	100	7n	82	62:38
4	60	7	100	7 o	80	48:52
5	6p	8	100	7p	75	56:44
6	6q	7	100	7 q	76	/
7	6r	8	100	7 r	72	44:56

^{*a*} **5**/CuCl = 1:1.10. ^{*b*} The conversion was based on **5** by ¹⁹F NMR. ^{*c*} Isolated yields **7** in addition to a trace of HCF₂CO₂Et. ^{*d*} The ratio was determined by ¹⁹F NMR. ^{*e*} The reaction was performed without CuCl.

aldehydes [such as butanal (**6n**), but-2-enal (**6o**)], and even ketones [such as cyclohexanone (**6q**) and acetophenone (**6r**)].⁸

It is important to note that the solvent, HMPA, is essential for this reaction, as its absence results in failure. The addition of CuCl to the reaction mixture improves the yields of the products. For example, in the reaction of **6m** with **5**, the yield of **7m** was **84**% in the presence of 110 mol % of CuCl, while only 55% in its absence (Scheme 3). The results are listed in Table 3.

In conclusion, we present here a convenient method for stereoselective synthesis of ethyl α -fluoro silyl enol ether from unexpensive chlorofluoroacetate. The successful Mukaiyama aldol reaction of ethyl α -fluoro silyl enol ether gives α -fluoro β -hydroxy esters in good to excellent yields. The study on the asymmetric aldol reaction of **5** with aldehydes or ketones is in progress.

Experimental Section

¹H NMR spectra were recorded with TMS as an internal standard (positive for upfield). ¹⁹F NMR spectra were recorded using CF₃COOH as an external standard (positive for upfield). The solvent for NMR measurement was CDCl₃ or CD₃COCD₃. Caution: HMPA is carcinogenic.

1. Stereoselective Synthesis of Ethyl α-Fluoro Silyl Enol Ether in HMPA. To a mixture of activated zinc dust (14.3 g, 0.24 mol) and HMPA (80 mL), stirred at 25 °C, under nitrogen, was added chlorotrimethylsilane (32 mL, 0.24 mol). The mixture was stirred at 25 °C for 90 min and cooled to 5 °C. Ethyl chlorofluoroacetate (3) (28.0 g, 0.20 mol) was added dropwise. The cooling bath was removed, and the reaction was allowed to a temperature of 30-40 °C for 5 h and 50 °C for an additional 1 h. ¹⁹F NMR showed the conversion of chlorofluoroacetate was 100%. After the mixture was extracted with ether. The combined ether layer was washed with water and

⁽⁷⁾ Here we describe the products having the syn or anti configuration according to ref 5; i.e., when two substituents, fluorine and hydroxyl, are on the same side of the molecule plane in a zigzig main chain, the molecule is denoted as having a syn relationship, whereas on the opposite side of this plane it is denoted as possessing an anti relationship.

⁽⁸⁾ Ito, H.; Ishizuka, T.; Tateiwa, J.; Hosomi, A. *Tetrahedron Lett.* **1998**, *39*, 6295.

dried over anhydrous Na_2SO_4 . After the ether was removed, the crude product was distilled under reduced pressure to give 5 as a colorless oil (28.4 g, yield 80%), bp 83–85 °C/37 mmHg.

Ethyl α-fluoro silyl enol ether (5) (*E*-configuration): colorless oil; IR (film) (cm⁻¹) 2966, 1752, 1720, 1369, 1254, 1203, 1051, 853; ¹H NMR δ 0.18 (s, 9H), 1.28 (t, J = 7.2 Hz, 3H), 4.23 (q, J = 7.2 Hz, 2H), 4.95 (d, J = 48 Hz, 1H); ¹⁹F NMR δ 150.2 (d, J = 48 Hz, 1F); MS *m/z* (relative intensity) 178 (M⁺, 5.73), 135 (17.96), 79 (26.43), 73 (100.00), 45 (16.43); HRMS calcd for C₇H₁₅FO₂Si 178.0825, found 178.0834.

2. Stereoselective Synthesis of Ethyl α -Fluoro Silyl Enol Ether in DMF. To a mixture of magnesium (3.9 g, 0.16 mol) and chlorotrimethylsilane (34.7 g, 0.32 mol) in distilled DMF (200 mL), cooled to 0 °C, under nitrogen, was added 3 (2.8 g, 20 mmol) dropwise. Then the mixture was stirred for an additional 6 h at 25 °C. After removal of the excessive chlorotrifluorosilane in a vacuum and of the residue magnesium by decantation, the product was extracted with ether. The combined ether layer was washed with ice-cold water and then dried over Na₂SO₄. After the ether was removed, the crude product was distilled under reduced pressure to give 5 as a colorless oil (2.9 g, 82%).

3. General Procedure for TMS-OTf-Promoted Aldol Reaction of Ethyl α -Fluoro Silyl Enol Ether (5) with Aldehydes in CH₂Cl₂. To a solution of **6a** (212 mg, 2 mmol) and TMS-OTf (8 μ L) in dry CH₂Cl₂ (5 mL) at room temperature was added **5** (356 mg, 2 mmol). The mixture was refluxed for 4 h. ¹⁹F NMR showed the conversion of **5** was 100%. The product was extracted with ether and dried over Na₂SO₄. After removal of the ether, the residue was subjected to column chromatography, using petroleum ether and ethyl acetate (5: 1) as eluant, to give **7a** as a colorless oil (339 mg, 81%).

Ethyl 2-fluoro-3-hydroxy-3-phenylpropanoate (7a):⁹ colorless oil; 81% yield; IR (film) (cm⁻¹) 3474, 2986, 1747, 1376, 1301, 1214, 1106, 1028; ¹H NMR δ 1.19 (t, J = 7.1 Hz, 3H), 1.96 and 3.07 (s, 1H), 4.05 and 4.15 (q, J = 7.0 Hz, 2H), 5.02–5.18 (m, 2H), 7.29–7.48 (m, 5H); ¹⁹F NMR δ 117.4 (dd, J = 50.0, 19.5 Hz, 0.53F), 122.8 (dd, J = 47.5, 24.8 Hz, 0.47F); MS m/z (relative intensity) 213 (M⁺ + 1, 3.80), 212 (M⁺, 1.24), 195 (66.81), 151 (17.41), 123 (21.08), 107 (100.00), 91 (15.50), 79 (48.19).

Ethyl 2-fluoro-3-hydroxy-3-(4-trifluoromethylphenyl)propanoate (7b): white solid; 85% yield; IR (KBr) (cm⁻¹) 3461, 2990, 1751, 1338, 1131, 1116, 859. ¹H NMR δ 1.16 and 1.22 (t, J = 7.1 Hz, 3H), 2.84 (s, 1H), 4.18 (m, 2H), 5.12–5.41 (m, 2H), 7.69 (m, 4H); ¹⁹F NMR δ –19.3 (s, 3F), 117.2 (dd, J =48.5, 19.0 Hz, 0.54F), 124.5 (dd, J = 47.8, 26.1 Hz, 0.46F); MS m/z (relative intensity) 281 (M⁺ + 1, 11.97), 263 (55.04), 219 (60.85), 191 (42.09), 175 (67.25), 127 (100.00), 106 (55.10), 78 (58.37); HRMS calcd for C₁₂H₁₀F₄O₂ 262.0616, found 262.0600.

Ethyl 2-fluoro-3-hydroxy-3-(3-trifluoromethylphenyl)propanoate (7c): colorless oil; 80% yield; IR (film) (cm⁻¹) 3480, 2989, 1749, 1331, 1168, 1127, 1075, 807, 703; ¹H NMR δ 1.15 and 1.20 (t, J = 7.1 Hz, 3H), 1.96 and 3.04 (s, 1H), 4.04– 4.21 (m, 2H), 5.15–5.30 (m, 2H), 7.57–7.85 (m, 4H); ¹⁹F NMR δ –19.2 (s, 3F), 117.3 (dd, J = 46.8, 20.0 Hz, 0.5F), 124.5 (dd, J = 47.4, 26.0 Hz, 0.5F); MS *m*/*z* (relative intensity) 281 (M⁺ + 1, 22.72), 263 (94.21), 219 (100.00), 191 (52.69), 171 (43.84), 127 (59.26); HRMS calcd for C₁₂H₁₂F₄O₃ 280.0722, found 280.0683.

Ethyl 2-fluoro-3-hydroxy-3-(4-nitrophenyl)propanoate (7d): colorless oil; 87% yield; IR (film) (cm⁻¹) 3502, 2987, 1759, 1608, 1524, 1350, 1217, 1108, 1015, 857, 724; ¹H NMR δ 1.16 and 1.24 (t, J = 7.1 Hz, 3H), 2.05 and 3.10 (s, 1H), 4.16 (m, 2H), 5.17–5.36 (m, 2H), 7.72–8.26 (m, 4H); ¹⁹F NMR δ 116.7 (dd, J = 47.9, 19.5 Hz, 0.56F), 124.9 (dd, J = 47.7, 26.1 Hz, 0.44F); MS m/z (relative intensity) 258 (M⁺ + 1, 5.18), 240 (5.16), 152 (63.67), 106 (100.00), 78 (89.71), 43 (52.33); HRMS calcd for C₁₁H₁₀FNO₄ 239.0593, found 239.0587.

Ethyl 2-fluoro-3-hydroxy-3-(3-nitrophenyl)propanoate (7e): colorless oil; 80% yield; IR (film) (cm⁻¹) 3485, 2987, 1748,

(9) Mcbee, E. T.; Pierce, O. R.; Christman, D. L. J. Am. Chem. Soc. **1955**, 77, 1981.

1533, 1353, 1219, 1097, 724; ¹H NMR δ 1.16 and 1.25 (t, J = 7.1 Hz, 3H), 2.90 (s, 1H), 4.19 (m, 2H), 5.19–5.61 (m, 2H), 7.66–8.35 (m, 4H); ¹⁹F NMR δ 117.7 (dd, J = 50.1, 18.7 Hz, 0.5F), 123.6 (dd, J = 47.8, 26.0 Hz, 0.5F); MS *m*/*z* (relative intensity) 257 (M⁺, 0.09), 152 (58.09), 106 (100.00), 78 (76.41), 29 (8.61); HRMS calcd for C₁₁H₁₂FNO₅ 257.0699, found 257.0735.

Ethyl 2-fluoro-3-hydroxy-3-(2-nitrophenyl)propanoate (7f): white solid; 83% yield; IR (KBr) (cm⁻¹) 3466, 2999, 1743, 1525, 1378, 1345, 1217, 1060, 861, 794, 717; ¹H NMR δ 1.17 and 1.28 (t, J = 7.2 Hz, 3H), 2.11 and 3.28 (s, 1H), 4.14 and 4.26 (q, J = 7.2 Hz, 2H), 5.25 (td, J = 44.5, 3.0 Hz, 1H), 5.83 (m, 1H), 7.60–8.08 (m, 4H); ¹⁹F NMR δ 110.6 (dd, J = 47.6, 16.0 Hz, 0.52F), 126.4 (dd, J = 47.6, 25.8 Hz, 0.48F); MS *m*/*z* (relative intensity) 239 (M⁺ – 18, 0.91), 152 (100.00), 134 (53.51), 104 (54.86), 78 (43.63), 29 (9.43); HRMS calcd for C₁₁H₁₀FNO₄ 239.0593, found 239.0590.

Ethyl 2-fluoro-3-hydroxy-3-(4-methylphenyl)propanoate (7g). colorless oil; 60% yield; IR (film) (cm⁻¹) 3482, 2985, 1748, 1375, 1297, 1210, 1109, 1062, 820, 771; ¹H NMR δ 1.18 (t, J = 7.1 Hz, 3H), 3.04 (s, 1H), 2.31 (s, 3H), 4.05 and 4.15 (q, J = 7.1 Hz, 2H), 5.05 (m, 2H), 7.13–7.35 (m, 4H); ¹⁹F NMR δ 117.6 (dd, J = 50.0, 18.0 Hz, 0.44F), 122.5 (dd, J = 47.5, 25.8 Hz, 0.56F); MS *m*/*z* (relative intensity) 226 (M⁺, 0.64), 209 (100.00), 165 (16.85), 121 (65.66), 105 (11.59), 93 (35.81); HRMS calcd for C₁₂H₁₅FO₃ 226.1005, found 226.0962.

Ethyl 2-fluoro-3-hydroxy-3-(3-methylphenyl)propanoate (7h): colorless oil; 72% yield; IR (film) (cm⁻¹) 3483, 2985, 1749, 1376, 1301, 1217, 1110, 1062, 754, 715. ¹H NMR δ 1.18 (t, J= 7.1 Hz, 3H), 1.96 and 3.06 (s, 1H), 2.32 (d, J = 3.5 Hz, 3H), 4.05 and 4.16 (q, J = 7.1 Hz, 2H), 5.09 (m, 2H), 7.10–7.28 (m, 4H); ¹⁹F NMR δ 117.2 (dd, J = 50.2, 16.6 Hz, 0.5F), 122.5 (dd, J = 48.7, 15.9 Hz, 0.5F); MS *m*/*z* (relative intensity) 226 (M⁺, 1.24), 206 (7.07), 121 (100.00), 105 (12.50), 93 (79.44), 91 (48.66), 77 (27.11); HRMS calcd for C₁₂H₁₅FO₃ 226.1005, found 226.0976.

Ethyl 2-fluoro-3-(4-fluorophenyl)-3-hydroxypropanoate (7i):¹⁰ colorless oil; 78% yield; IR (film) (cm⁻¹) 3473, 2987, 1747, 1607, 1513, 1376, 1306, 1224, 1099, 1062, 841, 782. ¹H NMR δ 1.21 (t, J = 7.2 Hz, 3H), 2.86 (s, 1H), 4.18 (q, J = 7.2 Hz, 2H), 5.00–5.18 (m, 2H), 7.12 (m, 2H), 7.50 (m, 2H); ¹⁹F NMR δ 34.2 (m, 1F), 117.9 (dd, J = 50.0, 18.5 Hz, 0.44F), 123.0 (dd, J = 47.9, 26.0 Hz, 0.56F); MS *m*/*z* (relative intensity) 230 (M⁺, 3.16), 210 (6.90), 125 (100.00), 109 (10.84), 97 (36.63).

Ethyl 3-(4-chlorophenyl)-2-fluoro-3-hydroxypropanoate (7j):¹¹ colorless oil; 75% yield; IR (film) (cm⁻¹) 3467, 2986, 1747, 1494, 1376, 1307, 1217, 1093, 833, 745; ¹H NMR δ 1.22 (t, J = 7.1 Hz, 3H), 1.98 and 3.28 (s, 1H), 4.07 and 4.16 (t, J = 7.1 Hz, 2H), 5.04–5.25 (m, 2H), 7.37–7.53 (m, 4H); ¹⁹F NMR δ 117.7 (dd, J = 50.0, 19.0 Hz, 0.5F), 124.5 (dd, J = 47.8, 26.0 Hz, 0.5F); MS *m*/*z* (relative intensity) 246 (M⁺, 3.59), 226 (6.55), 141 (100.00), 77 (32.84).

Ethyl 3-(4-bromophenyl)-2-fluoro-3-hydroxypropanoate (**7k**): colorless oil; 74% yield; IR (film) (cm⁻¹) 3456, 2990, 1754, 1217, 1205, 1099, 1011, 735. ¹H NMR δ 1.12 and 1.22 (t, J = 7.1 Hz, 3H), 3.27 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 5.04–5.24 (m, 2H), 7.37–7.57 (m, 4H); ¹⁹F NMR δ 117.6 (dd, J = 48.9, 19.0 Hz, 0.5F), 123.7 (dd, J = 47.0, 16.0 Hz, 0.5F); MS *m*/*z* (relative intensity) 290 (M⁺, 4.58), 272 (5.60), 187 (91.57), 185 (100.00), 157 (15.59), 106 (17.37), 78 (38.16); HRMS calcd for C₁₁H₁₂BrFO₃ 289.9953, found 289.9969.

Ethyl 2-fluoro-3-hydroxy-3-(3-hydroxyphenyl)propanoate (7l): colorless oil; 65% yield; IR (film) (cm⁻¹): 3402, 2987, 1741, 1594, 1459, 1377, 1226, 1110, 1058, 1021, 861, 769, 721, 698; ¹H NMR δ 1.20 (t, J = 7.1 Hz, 3H), 2.10 and 3.35 (s, 2H), 4.19 (q, J = 7.1 Hz, 2H), 4.98–5.18 (m, 2H), 6.75–7.20 (m, 4H); ¹⁹F NMR δ 117.1 (dd, J = 47.8, 21.5 Hz, 0.5F), 122.3 (dd, J = 48.0, 24.1 Hz, 0.5F); MS *m*/*z* (relative intensity) 228 (M⁺, 18.87), 123 (100.00), 95 (75.59), 77 (25.66), 43 (45.03); HRMS calcd for C₁₁H₁₃FO₄ 228.0797, found 228.0806.

CuCl-Promoted Aldol Reaction of Ethyl α-**Fluoro Silyl Enol Ether in HMPA.** To a flask, with CuCl (110 mg, 1.11

⁽¹⁰⁾ Shen, Y.-C.; Qi, M. J. Chem. Res. 1993, 223.

⁽¹¹⁾ Elkik, E.; Francesh, C. Bull. Soc. Chim. Fr. 1973, 1281.

mmol) dissolved in 1 mL of anhydrous HMPA, were added **5** (178 mg, 1 mmol) and **6m** (136 mg, 1 mmol) under nitrogen protection. Then the mixture was stirred at 50 °C for 10 h. ¹⁹F NMR showed the conversion of **5** was 100%. The product was extracted with ether and dried over Na₂SO₄. After the removal of the ether, the residue was subjected to column chromatography, using petroleum ether and ethyl acetate (5: 1) as eluant, to give **7m** as a colorless oil (205 mg, 84%).

Ethyl 2-fluoro-3-hydroxy-3-(4-methoxyphenyl)propanoate (7m): colorless oil; 84% yield; IR (film) (cm⁻¹) 3477, 2985, 1747, 1614, 1516, 1252, 1105, 1031, 836, 776. ¹H NMR δ 1.21 (t, J = 7.3 Hz, 3H), 3.26 (s, 1H), 3.77 (s, 3H), 4.14 (q, J = 7.2 Hz, 2H), 4.92–5.16 (m, 2H), 6.89 (m, 2H), 7.35 (m, 2H); ¹⁹F NMR δ 117.9 (dd, J = 50.2, 18.5 Hz, 0.53F), 121.6 (dd, J = 46.7, 24.5 Hz, 0.47F); MS m/z (relative intensity) 242 (M⁺, 6.82), 225 (100.00), 197 (3.58), 137 (26.55), 109 (9.65); HRMS calcd for C₁₂H₁₅FO₄ 242.0954, found 242.0947.

Ethyl 2-fluoro-3-hydroxyhexanoate (7n): colorless oil; 82% yield; IR (film) (cm⁻¹) 3455, 2964, 1745, 1376, 1299, 1214, 1073, 1029, 856; ¹H NMR δ 0.91 (t, J = 7.0 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.37–1.58 (m, 4H), 2.89 (s, 1H), 3.98 (m, 1H), 4.20 (m, 2H), 4.81 and 4.98 (t and d, J = 1.8 and 3.4 Hz, 1H); ¹⁹F NMR δ 118.7 (dd, J = 49.5, 21.0 Hz, 0.62F), 127.0 (dd, J = 48.0, 26.2 Hz, 0.38F); MS m/z (relative intensity) 179 (M⁺ + 1, 2.42), 178 (M⁺, 0.02), 161 (3.14), 107 (24.99), 106 (60.43), 78 (100.00), 55 (51.85), 43 (38.19). Anal. Calcd for C₈H₁₅FO₃: C, 53.92; H, 8.48; F, 10.66. Found: C, 53.76; H, 8.70; F, 10.80.

Ethyl 2-fluoro-3-hydroxy-4(*E***)-hexenoate (70):** colorless oil; 80% yield; IR (film) (cm⁻¹) 3481, 2985, 1756, 1376, 1297, 1212, 1081, 1028, 969; ¹H NMR δ 1.26 (t, *J* = 7.2 Hz, 3H), 1.66 (m, 3H), 3.21 (s, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.40 (m, 1H), 4.87 (ddd, *J* = 48.0, 20.8, 3.5 Hz, 1H), 5.58 (m, 1H), 5.72 (m, 1H); ¹⁹F NMR δ 120.1 (dd, *J* = 50.0, 21.9 Hz, 0.48F), 123.6 (dd, *J* = 48.0, 23.9 Hz, 0.52F); MS *m*/*z* (relative intensity) 159 (M⁺ - 17, 3.03), 78 (24.30), 71 (100.00), 69 (16.22), 53 (11.44), 43 (22.80), 41 (20.55); HRMS calcd for C₈H₁₁FO₂ 158.0743, found 158.0755.

Ethyl 4-(4-dimethylaminophenyl)-2-fluoro-3-hydroxypropanoate (7p): colorless oil; 75% yield; IR (film) (cm⁻¹) 3480, 2984, 2896, 1749, 1616, 1526, 1351, 1220, 1060, 947, 821, 757; ¹H NMR δ 1.20 (t, J = 7.1 Hz, 3H), 2.91 (s, 6H), 3.25 (s, 1H), 4.13 (q, J = 7.0 Hz, 2H), 4.87–5.13 (m, 2H), 6.71 (m, 2H), 7.24 (m, 2H); ¹⁹F NMR δ 117.7 (dd, J = 48.8, 20.0 Hz, 0.56F), 120.2 (dd, J = 49.1, 23.0 Hz, 0.44F); MS *m*/*z* (relative intensity) 255 (M⁺, 9.90), 237 (0.91), 150 (100.00), 148 (13.83), 122 (14.27), 107 (10.32); HRMS calcd for C₁₃H₁₆FNO₂ 237.1165, found 237.1167.

Ethyl fluoro-1-(hydroxycyclohexyl)acetate (7q):⁹ colorless oil; 76% yield; IR (film) (cm⁻¹) 3521, 2939, 1745, 1450, 1375, 1304, 1211, 1095, 1033, 858; ¹H NMR δ 1.26 (t, J = 7.1 Hz, 3H), 1.48–1.73 (m, 10H), 3.23 (s, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.70 (d, J = 48.4 Hz, 1H); ¹⁹F NMR δ 117.6 (d, J = 48.5 Hz, 1F); MS *m*/*z* (relative intensity) 204 (M⁺, 3.12), 185 (10.60), 171 (45.96), 143 (45.99), 91 (89.17), 57 (100.00), 55 (74.32), 43 (59.61), 41 (60.91). Anal. Calcd for C₁₀H₁₇FO₃: C, 58.81; H, 8.39; F, 9.30. Found: C, 58.68; H, 8.38; F, 9.23.

Ethyl 2-fluoro-3-hydroxy-3-phenylbutanoate (77):⁵ colorless oil; 72% yield; IR (film) (cm⁻¹) 3501, 2987, 1749, 1449, 1376, 1304, 1209, 1091, 1028, 764, 701; ¹H NMR δ 0.99 and 1.08 (t, J = 7.1 Hz, 3H), 3.27 (s, 1H), 3.99 and 4.07 (q, J = 7.1 Hz, 2H), 5.08 (dd, J = 47.9, 7.2 Hz, 1H), 7.24–7.57 (m, 5H); ¹⁹F NMR δ 110.6 (d, J = 47.9 Hz, 0.44F), 113.2 (d, J = 48.0 Hz, 0.56F); MS *m*/*z* (relative intensity) 209 (M⁺ – 17, 2.22), 121 (100.00), 105 (17.75), 77 (10.51), 43 (53.33).

Acknowledgment. We thank the Natural Science Foundation of China for support of this work.

Supporting Information Available: ¹H NMR and ¹⁹F NMR spectra of **5**, **7a**,**b**,**e**,**g**,**i**,**n**,**q**,**r**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO010820+